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The extensional modulus of a series of uniaxially oriented tapes of isotactic polypropylene has been 
measured. The results are combined with earlier measurements of the orientation of the crystalline and 
non-crystalline regions and the reliability of several mechanical models is assessed. A single phase aggregate 
model, using the intrinsic mechanical properties of the crystal and overall measurements of orientation, is 
particularly successful in interpreting the low temperature mechanical moduli when the stress is assumed 
to be homogeneous throughout the material. At temperatures above the glass transition the distinction 
between the crystalline and non-crystalline components becomes significant and a two phase aggregate 
model provides better agreement with experimental results although its use is limited because of the number 
of unknown parameters and the possibility that the intrinsic mechanical properties of the non-crystalline 
phase may be sensitive to both temperature and orientation. Similarly, the number of unknown 
parameters limits the potential of a fibre composite model which provides good agreement with experiment 
at draw ratios greater than eight if a high fibre fraction is used. Such a high fraction would suggest 
identification of the fibre phase with either the microfibrils or helical sections of the molecule. 

(Keywords: isotactic polypropylene; extensional modulus; mechanical properties) 

INTRODUCTION 

One major problem has limited the success of model 
representations of the mechanical properties of semi- 
crystalline polymers; namely the identification of one or 
more of the different theoretical parameters with their 
experimentally measurable or morphological counter- 
parts. Thus, for example, a simple Takayanagi model t 
in which the increase in modulus with draw ratio is 
attributed to an increase in the fraction of taut tie 
molecules, suffers from the absence of any reliable 
independent experimental measurements of this fraction. 
Another model is the aggregate model which considers 
the material to be composed of anisotropic units whose 
properties are identical to those of the fully oriented 
material. The macroscopic moduli are expressed in terms 
of the intrinsic mechanical properties of these units and 
their distribution of orientations within the sample. 
Although this model has been applied with some success 
to polyethylene and polypropylene 2-6, there is no obvious 
morphological counterpart for the basic unit in a 
semicrystalline polymer. 

More recently, following the interest in polymer com- 
posites, a fibre composite approach has been examined. 
In their model, Barham and Arridge 7 consider what 
happens in the post necking region of a semi-crystalline 
polymer and attribute the increase in modulus with draw 
ratio in this region to an increase in the aspect ratio of 
the reinforcing fibre phase, the concentration of which 
is assumed constant throughout the post neck drawing 
region. In a series of papers Barham and Arridge 7-9 used 
this model to interpret the mechanical properties of 
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polyethylene and polypropylene and obtained consider- 
able success when values for the post neck fibre fractions 
were assumed. Again, however, there were no independent 
measurements of the fibre fractions. An alternative fibre 
composite approach, described by Gibson et  al. x°, has 
been more successful in overcoming this basic problem, 
but has only proved fruitful for polyethylene, where the 
increase in modulus is attributed to an increase in the 
degree of crystal continuity, the fibre phase being lengths 
of molecule bridging the non-crystalline regions. Experi- 
mental measurements of long period and crystal size 
strongly supported this interpretation. Recent work by 
Taraiya e t  al. 1 ~ suggests that this specific intercrystalline 
bridge model is not suitable for polypropylene. 

Some attempts to relate the mechanical properties of 
drawn polypropylene to the observed structural and 
intrinsic properties of the constituent phases using a 
modification of the aggregate model have been described 
by Samuels and co-workers ~2a3 but their analysis uses 
intrinsic mechanical parameters which have not been 
determined independently. A similar argument applies to 
the work of Leung e t  al. 14. Nevertheless, an important 
conclusion to be drawn from these attempts is that the 
orientation of the non-crystalline material can be impor- 
tant in determining the modulus. This conclusion has 
been further supported by the work of Yamada et  al. ~ 5, 
who showed that the room temperature modulus of a 
series of samples with similar crystallinities and crystallite 
orientations, prepared in different ways, was related to 
the orientation of the non-crystalline material. 

Overall, there is a lack of sufficient independent 
information to permit the adoption of a preferred model 
to describe the mechanical behaviour of polypropylene. 
Nevertheless, it is of specific interest to the understanding 
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of the mechanical behaviour of polypropylene to assess 
the merits of the different models, and it is to this end 
that the present work is directed. This paper follows an 
earlier report ~6 of the measurement of orientation in 
a series of drawn isotactic polypropylene tapes, and 
presents the results of mechanical measurements on the 
same series. In addition, the crystal modulus has been 
measured using an X-ray method and the models 
described above are assessed in the light of the results. 

where Sg3 for the phase p is obtained from equation (1) 
using the relevant parameters, and fl is the crystallinity. 
The superscripts c and a refer to the crystalline and 
non-crystalline material, respectively. It is obvious that 
independent measurements of the properties of the two 
phases are particularly desirable, but although the 
mechanical properties of the crystal can be estimated 
from theory and experiment, those of the non-crystalline 
regions are not so easily obtained. 

THEORETICAL MODELS 

The aggregate model 

In its simplest form this model, discussed by Ward 2, 
assumes that the polymer is composed of an aggregate 
of many identical transversely isotropic units, each with 
mechanical properties identical to those of a fully oriented 
sample. The properties of the bulk sample are found by 
suitable averaging of the contributions from each micro- 
scopic unit, with due regard for its orientation. More 
specifically they can be expressed in terms of the moment 
averages of the orientation distribution function and the 
properties of the basic unit. The relation between the 
macroscopic mechanical properties and extension is often 
found by assuming a pseudo-affine deformation scheme 
to predict the moment averages. Alternatively the moment 
averages can be determined experimentally and the 
macroscopic properties predicted using the model. 

The aggregate model, in its simplest form, does not 
directly consider how the differently oriented microscopic 
units are coupled to one another, but proposes two 
alternative averaging schemes. The first, which is usually 
assumed to mark the upper bound to the macroscopic 
moduli, is obtained by taking the ensemble average of 
the moduli of the basic units (the Voigt average, uniform 
strain), whilst the second, assumed to mark the lower 
bound, is obtained by applying the averaging process to 
the compliance constants, (the Reuss average, uniform 
stress). 

Application of the aggregate model has met with some 
success, and it has been shown that for most polymers 
the Reuss average provides the better agreement. For 
Reuss averaging, the extensional compliance, Sa3, 
(reciprocal of Young's modulus) of a transversely isotropic 
sample can be written 2 

S33 = (sin 40)sl  1 + ( cos4 0)s33 

+ (sin 2 0 cos 2 0)(2sla +s44) (1) 

where the s~i are the components of the compliance matrix 
for the microscopic unit and are usually obtained from 
measurements on highly oriented samples. The angle 0, 
is the inclination of the principal axis of symmetry of a 
unit to the draw direction, and the brackets, ( ) ,  indicate 
an average value for all units, taken over the distribution 
of orientations. 

A natural extension of this model to cover semi- 
crystalline polymers considers the properties of the two 
phases separately. In this case two basic units are 
considered, one with the properties of the crystalline 
phase, the other with the properties of the non-crystalline 
phase and the macroscopic modulus is found by averaging 
the compliances of the two phases. Thus the macroscopic 
compliance is given by 

$33 = flSe33 "[- (1 - fl)S~3 (2) 

The f ibre composite model 

One version of this model, described by Barham and 
Arridge 7, considers the polymer to consist of crystalline 
rods or fibrils in a basically amorphous matrix, although 
the matrix may also contain some crystalline material. 
It assumes that the fibrils carry only the tensile stresses 
and the matrix, in which they are embedded, carries no 
tensile stress but transfers load from fibril to fibril by 
shear. For such a model they showed that the Young's 
modulus, E, of the sample is given by 

E = cEf(1 - tanh x ) / x  + (1 - c)E m (3) 

where gf and E~ are the Young's moduli of the fibril and 
matrix respectively, and c is the volume concentration of 
the fibrils. The parameter x is given by 

x = 2A [G~/Ef  ln(2rc/x/3c)] 1/2 (4) 

where A is the aspect ratio (length/diameter) of the fibrils 
and G= the shear modulus of the matrix. 

The model attempts to explain the increase in modulus 
above the necking region, where it is assumed that there 
is no further change in orientation. It assumes that the 
needle-like fibrils deform homogeneously during drawing, 
increasing their length by the post neck draw ratio t. For 
constant volume deformation the aspect ratio at draw 
ratio t, At, is then given by 

a t = A o  t3/2 (5) 

where Ao is the aspect ratio of the fibrils in the 
undeformed fibrillar material (t= 1), i.e. at the end of 
necking. Equations (3), (4) and (5) give the dependence 
of the modulus on the post neck draw ratio. The main 
problem with this approach is that it is difficult to 
envisage how the relatively stiff fibrils can deform in a 
soft matrix and retain a constant El. 

Gibson et al. 1° also considered a fibre composite 
model, but their physical interpretation of the nature of 
the reinforcing fibre phase differs from that of Barham 
and Arridge 7. In the model of Gibson et al. the reinforcing 
elements are assumed to be the short lengths of polymer 
which cross one or more regions of non-crystalline 
material, thus producing a continuous crystalline phase. 
They do not envisage the reinforcing elements as discrete 
identifiable entities, which retain their identity throughout 
the drawing process, but prefer to consider that at each 
stage of deformation there is a degree of crystal continuity 
which can be represented by an apparent fibrillar content. 

A further feature of the composite model is its ability 
to predict the dependence of Young's modulus on 
temperature. Thus, equations (3) and (4), combined with 
a knowledge of the dependence of the shear modulus on 
temperature, can be used to find Young's modulus as a 
function of temperature. This more promising aspect of 
the fibre composite model has been discussed by Gibson 
et al. 17 
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EXPERIMENTAL 

The samples used in this work were tapes of iso- 
tactic polypropylene (IPP) (HF-18, Imperial Chemical 
Industries Ltd) containing 0.004% of a fluorescent probe. 
Full details of the preparation of these tapes, together 
with measurements of orientation, have been reported 
elsewhere 16 and reference should be made there for 
detailed information. Briefly, drawn tapes were produced 
in one of two ways. Draw ratios in the range 1 to about 7 
were produced by a continuous drawing method, in 
which isotropic tape (M w ~ 450 000) was drawn between 
two rollers, running at different speeds, on a draw frame. 
To localize the draw point the tape passed round a roller 
(called the pin) immersed in glycerol at ll0°C. Tapes 
produced in this way form series A. Samples in series B 
had draw ratios in the range 8 to 13 and were produced 
by drawing dumbbells cut from film (Mw,-~ 330000) on 
an Instron tensile testing machine at an air temperature 
of l l0°C using a draw speed of 5cmmin -1. This 
corresponds to an initial strain rate of about 2 min-1. 

Mechanical measurements 
Two types of macroscopic mechanical moduli are 

considered here. The 10 s isochronal creep modulus can 
be readily compared with earlier measurements of 
mechanical moduli on similar samples and is useful in 
this respect. Measurements of dynamic modulus provide 
a means of assessing molecular mobility which is of con- 
siderable significance in justifying subsequent modelling. 

Ten second isochronal creep modulus 
Measurements of Young's modulus were made at room 

temperature using apparatus and method similar to that 
described by Gupta and Ward is. The creep Strain at 10 s 
was measured as a function of applied load for a series 
of loads so that the load required to produce 0.1%o strain 
could be found. The 10s isochronal creep modulus at 
0.1% strain could then be calculated when the cross 
sectional area o f  the sample had been measured. 

Dynamic modulus 
Dynamic mechanical measurements were performed 

over an extensive temperature range at frequencies of 1 
and 10 Hz on samples of length about 5 cm mounted in 
tension between two stainless steel clamps. A sinusoidal 
extension was applied to the sample by means of a 
vibrator driven by a Solatron 1250 frequency response 
analyser (FRA). A fuller description of the apparatus is 
given elsewhere 19'2° but the basic advantage of the FRA 
is the direct determination of the complex modulus 
through calculations of the ratio of the stress and strain 
signals. Calculations were performed by the FRA over 
several cycles and accepted if the variation was less than 
5%. Occasionally the presence of lateral vibrations at 
particular temperatures and frequencies 15roduces noisy 
results. The use of two different dynamic frequencies 
assists the identification of errors from this source. 

The measurements were made with the samples under 
a dead load sufficient to produce a strain of about 0.15%. 
The oscillatory strain was held constant at 0.1% (peak 
to peak). Moduli determined using dead loads which 
produced strains of 0.1 and 0.2%, differed by less than 
5%. The modulus was measured at temperatures accurate 
to 0.2°C in the range -100 to 70°C. Final values of 
modulus are accurate to about 8%. 

Crystal modulus 
The crystal modulus of a sample can be obtained from 

measurements of the crystal strain, produced by the 
application of a known stress to the sample, if the stress 
can be regarded as transferred to the crystalline phase 
(i.e. the stress is homogeneous throughout the specimen). 
The crystal strain can be measured by observing the 
change in the diffraction angle, 20, for a suitable 
diffraction peak. For measurements in this work the (113) 
reflection from a sample of draw ratio 11.7 was considered. 

Copper K~ radiation was obtained from a Siemens 
X-ray tube using a nickel filter. The active area of a 
position-sensitive detector lay on a chord of a circle, 
whose centre coincided with that of a standard Philips 
X-ray diffractometer table. The position sensitive detector 
was interfaced to a Norland Ino-Tech 5300 multichannel 
analyser, so that the multichannel analyser recorded the 
diffracted X-ray intensity along the chord, and conse- 
quently enabled the 20 profile of the peak to be observed 
directly. 

Measurements were performed on a single tape, which 
was mounted on a stretching rig consisting of two clamps 
mounted on a system of low friction linear bearings. One 
clamp was fixed and a dead load could be applied to the 
other in order to apply a constant stress to the sample, 
which was mounted between these two clamps. The 
sample was mounted so that the draw direction and the 
normal to the plane of the sample lay in the same plane as 
the incident and diffracted X-ray beams. The inclination 
of the sample draw direction to the bisector of the incident 
and diffracted X-ray beams was selected to give maximum 
intensity at the detector. The 20 profile of the diffracted 
X-ray peak was then recorded for a series of applied dead 
loads, as well as for the unstressed state between each 
applied load. To obtain the central position of each peak, 
a fit of the experimental data to a theoretical curve, 
composed of a Gaussian peak, Lorentzian peak and a 
linear background was performed. The shift in position 
of the peak was used to calculate the change in the 
interplane spacing for the (i13) reflection, and this was 
then corrected to produce the strain in the c axis direction. 
Although IPP has a monoclinic crystal structure the 
deviation from orthorhombic structure is small and this 
correction can therefore be found quite accurately by 
assuming an orthorhombic structure and differentiating 
the interplane spacing with respect to the a, b and c cell 
dimensions to obtain the relation between strains in the 
different directions. This has the added advantage that 
Poisson's ratio effects can easily be included. The 
correction factor for the (i13) plane is 0.89 without 
considering Poisson's ratio effects and 0.86 for a Poisson's 
ratio of 0.33. The crystal modulus was measured at two 
temperatures, -50°C and 20°C. 

RESULTS 

Values for the room temperature Young's modulus in 
the draw direction, obtained from the ten second 
isochronal creep measurements, are tabulated in Table i; 
Figure 1 illustrates the variation with draw ratio. Initially 
there is a gradual increase in the modulus but above a 
draw ratio of 5 the modulus rises more rapidly, with a 
tenfold increase over the isotropic value being shown by 
samples of draw ratio 11. This behaviour, similar to that 
published elsewhere, was generally found to be poorly 
described by the aggregate model 3-5. 
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Table 1 Extensional modulus results for drawn IPP 

Draw 10 s creep modulus 
ratio at room temperature 

Dynamic modulus at 1 Hz and 

-90°C (GPa) ,45°C (GPa) 

1 0.9 
1.22 
1.3 1.3 
1.92 1.5 
3.5 2.4 
4.8 3.6 
7.1 6.0 
9.5 
9.8 9.4 

12.0 
12.1 
12.6 11.2 

5.11 1.42 

10.83 2.98 
12.59 4.52 
14.72 5.57 
19.14 9.73 

21.82 12.22 
25.56 14.62 

16 

14 

12 
O a_ 10 
(.9 
" "  8 Ul 

6 

0 

Drow rotio 

Figure 1 Variation of 10 s isochronal creep modulus at room tempera- 
ture with draw ratio for IPP 

Figure 2 shows the temperature dependence of the 
dynamic modulus of several samples, and Figure 3 the 
tan 6 curves for the same samples. In each case the 
modulus increases as the temperature decreases, but rises 
much more slowly at low temperatures. Although there 
is still a small rise in modulus as the temperature 
decreases it is convenient to use the term 'plateau 
modulus' in the temperature region below about 0°C. 
This plateau value depends on the extension, being 
greater for higher draw ratios. The dependence of the 
modulus on draw ratio will be considered at two 
temperatures, one each side of T~, the glass transition 
temperature (about 15°C). As expected, results at 10 Hz 
are slightly greater than those at 1 Hz and the same 
temperature, but the difference is small enough to allow 
both sets to be included in the modelling without 
introducing significant errors. 

Some typical dynamic modulus results at temperatures 
of 45 and - 9 5 ° C  are listed in Table 1, and Figure 4 
illustrates the variation with draw ratio. Immediately it 
can be seen that at low extensions (draw ratio < 5), the 
dependence of the modulus on draw ratio at 45°C is very 
different from that at - 95°C. At a temperature of 45°C 
the modulus shows a small change with draw ratio and 
is in good agreement with the results obtained for the 
isochronal creep modulus. At - 9 5 ° C ,  however, the 
modulus is much more sensitive to draw ratio at low 
extension. 

Values of 3 4 + 2 G P a  and 3 5 _ 2 G P a  were obtained 
for the longitudinal crystal modulus at 20°C and - 50°C 

respectively. These agree well with a value of 35 GPa, 
reported by Sakurada and Kaji 2 ~, although other authors 
have quoted slightly different values. Fanconi and 
Rabolt 22 have quoted a value as high as 88 GPa, but 
most other reports quote significantly lower values, and 
a theoretical calculation by Tashiro et al. ~ yielded a 
value of 25 GPa. The quoted errors of 6% in the present 
results arise principally from uncertainties in the gradient 
of the peak shift versus applied load graph and the sample 
cross-sectional area. In the event of non-homogeneous 
stress transfer within the sample the values reported here 
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Figure 2 Temperature dependence of the dynamic modulus at 10 Hz 
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would of course be underestimates. This possibility is 
discussed in detail later. Finally the crystallinity, measured ze 
using a density technique, was found to be typically about 
58%. 2~ 

MODELLING 

Single phase aggregate model 
We will first compare the predictions of the single phase 

model with the low temperature (-95°C) dynamic 
modulus results. The components of the compliance 
matrix which are used here are those for the crystalline 
phase, sick. This has particular merit since the values of 
these quantities are the most readily obtainable. A value 
of s~ a = 0.029 GPa-  1 is obtained from the measurements 
of the crystal modulus. A value of 0.33 GPa -1 for S~l 
has been quoted by Sakurada et al. 24, but unfortunately 
there is no information for the term (2s~a+s~). An 
estimate of its value, however, may be found by 
considering the modulus of a totally random sample. 
Substitution of the above values into equation (1) gives 
a value of 0.41 GPa-  1 for (2s~3 +s~a). 

Alternatively if Poisson's ratio, v = - s~  a/s33, is assumed 
to be 0.35, and the low temperature shear modulus 25 is 
used to give a value for s~4 of 0.59 GPa-  1 the value of 
the parameter (2s~3+s~a) is found to be 0.4GPa -~, 
which agrees well with the value given above. 

For the pseudo-aftine deformation scheme the orien- 
tation parameters in equation (1) can be obtained from 
the draw ratio in the manner described by Ward 2. Figure 5 
shows the predicted variation in modulus as a function 
of draw ratio using the above values for siC; and assuming 
a pseudo-affine deformation. The curves for both Reuss 
and Voigt averaging are given, although in the absence 
of a complete knowledge of the compliance matrix, 
approximate values for the stiffness constants have been 
obtained from the reciprocal compliance values. Also 
shown in Figure 5 are two additional Reuss curves using 
considerably different values of (2s~3 + s~,~) as well as the 
results of modulus measurements at -95°C on the drawn 
IPP samples. Birefringence measurements ~6 on these 
samples have shown that the overall deformation is 
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Figure 6 Compar ison of modulus  results at 45°C with two phase 
aggregate model using Reuss averaging. - - - - ,  A, ~ ~ =2.5  G P a - 1 ;  
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D, S~l = 0.33 G a a -  1; (2~ a + s~4) = 9.18 ~ P a -  ~ 

pseudo-affine. Clearly there is remarkably good agree- 
ment between the predicted and experimental results at 
-95°C when Reuss averaging is considered. Furthermore, 
the effect of altering considerably the only unknown 
parameter, (2s]3 +s~a), is not to change significantly the 
predictions of the model. 

Two phase aggregate model 
The predictions of the two phase model will be 

compared with the dynamic modulus results at 45°C. 
The values of the compliance constants for the crystal 
phase, s~, are, taken to be those used above in the single 
phase model. Unfortunately it is not possible to measure 
directly the compliance constants for the non-crystalline 
phase, si~, so several approximations need to be made. 
It has been shown 26 that the molecules in the amorphous 
phase can be regarded as short helical sections separated 
by conformational reversals. Because the intermolecular 
forces are considerably weaker than the intramolecular 
forces it is reasonable to assume that saaa -saa.- c Values for 
the other non-crystalline parameters, s] 1 and (2s] a + s~4), 
are obtained from the modulus of a random sample using 
equations (1) and (2) with a value of 0.58 for/3. These 
two parameters are the only unknowns and so a series 
of pairs of values for them will satisfy equation (2) for 
an isotropic sample. The dynamic modulus at 45°C of 
the undrawn sample was used to provide these values. 
Considering only the case of Reuss averaging the possible 
pairs of values for these parameters predict moduli that 
fall between two bounds. The lower Reuss bound to the 
modulus is given by having s~ 1 = s~ 1, whilst the upper 
Reuss bound is given by having (2s]a + s~4)= (2s~a + s~4). 
These two cases predict values of (2~3 q- s~4 ) = 9.18 GPa- 1 
and s] 1 = 2.5 GPa-1, respectively. Two additional inter- 
mediate sets of values were arbitrarily chosen, namely 
s~l=2GPa-1 ,  (2s~a+s~4)=2.5GPa-1 and S~l= 
2.4GPa -1, (2s~a+S~g)=lGPa -1. The values for the 
orientation parameters were obtained using the X-ray 
measurements reported earlier 16 and assuming that the 
contributions of the different phases to the orientation 
functions averaged to produce pseudo-affine values. 

Figure 6 shows the predicted curves for Reuss averaging 
plus the experimental points at 45°C. Good agreement 
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between the predicted and experimental results is obtained 
when the value of (2sx3 + s44 ) is the same for both phases 
(curve A), an agreement which is not repeated when the 
restriction is applied to sll (curve D). In reality both s]l 
and (2s]3 + s,~4 ) would be expected to be greater than s] 1 
and (2s~3 + s~4) respectively, and the Reuss curve for this 
situation should fall between the limits A and D. 

The fibre composite model applied to IPP 
As mentioned earlier, there are two aspects of the 

fibre composite model worthy of attention; namely the 
dependence of the modulus at a fixed temperature on 
affine deformation of the fibrils and the dependence of 
the modulus on temperature. Of these, the former will 
be considered first because fewer parameters are needed. 
The fibril modulus is assumed to be equal to the crystal 
modulus, 35 GPa, and this value, coupled with the sample 
modulus, restricts the possible range of c if Ef >> Era, which 
initially is assumed to be so. If the model is applied at 
low temperatures where the sample modulus can be 
greater than 28 GPa, a e value greater than 0.8 is required. 
Thus (1-c)  is close to zero, and this together with the 
small value for Em means that the second term on the 
fight hand side of equation (3) can be neglected to a first 
approximation. 

It is not necessary to know explicitly a value for the 
parameter x in order to assess the merits of this model. 
Instead, if a value is assumed for c, equation (3) can be 
used to calculate the value of x required to produce 
a certain macroscopic modulus. This procedure was 
followed for an arbitrarily chosen fibril concentration of 
0.9 and a sample modulus of 21 GPa, which corresponds 
to the low temperature modulus of a sample of 2 = 10. 
For affine deformation of the fibrils equations (4) and 
(5) show that the ratio of the values of x at two different 
draw ratios is given by 

X1/X 2 = [ t l / t 2 ]  1"5 = [ -21 /22]  1"5 (6) 

Values for x at different draw ratios, )~, were thus 
obtained without the need to know the aspect ratio, shear 
modulus or even the true post neck draw ratio. The 
variation of modulus, thus predicted, is shown in Figure 
4, where good agreement with the low temperature data 
is observed except for values of 2 less than about 8. This 
suggests that a draw ratio of 8 marks the completion of 
the spherulitic to fibrillar transition. It is worth noting 
at this point that measurements of orientation on samples 
prepared using the two different drawing routes showed 
no discontinuity at the cross over draw ratio (~8), 
although it is of course possible that the morphology is 
discontinuous at this boundary. The assumption of a 
morphological change is implicit in the fibre composite 
model and it is not possible to eliminate the different 
drawing processes as a possible reason for this change. 

A c value of 0.8 provides a better fit to the low draw 
ratio samples but results in greater discrepancies at high 
draw ratios. Lower values of c do not improve the fit 
unless the contribution from E m is no longer considered 
negligible. It is interesting to note that a c value of 0.907 
corresponds to close hexagonal packing of cylinders of 
equal diameter. Thus a value of c = 0.9 is perhaps not so 
unreasonable, but it can be expected to mark the upper 
limit. More specifically, such a high c value, when 
compared with crystallinity measurements of 58%, 
implies that the fibre phase should not be identified with 

the crystalline phase. Possible alternatives are either the 
microfibrils or helical sections of molecule. 

The second aspect of the model can be examined using 
the temperature dependence of the shear modulus. The 
shear moduli of the amorphous phase for temperatures 
of -95°C and 45°C are taken to be 1.6 and 0.35GPa, 
respectively. These values were obtained from dynamic 
torsional measurements on oriented samples zS. The 
values quoted here are for samples of draw ratio equal 
to 7.6, which is assumed to mark the onset of fibril 
formation. Several problems arise concerning the values 
chosen for the shear modulus, namely the values used 
are macroscopic values; and although at -95°C the 
variation of shear modulus with draw ratio is small, this 
is not the case at 45°C where the shear moduli for samples 
of draw ratio 3.7 and 16 are 0.15 and 0.65GPa, 
respectively. 

From equation (4) it can be seen that x is proportional 
to G 1/2 s o  that the value of x at 45°C for any sample can 
be calculated from that at -95°C and the square root 
of the ratio of the two shear moduli. The appropriate 
modulus is then calculated using equation (3). The 
predicted dependence of the modulus with draw ratio at 
this temperature is also shown in Figure 4. This time the 
agreement between the predicted and the experimental 
results is not quite so good with discrepancies occurring 
at high draw ratios. Moreover, although different values 
for the shear moduli can alter the slope of this curve they 
also change the absolute values in such a way that the 
overall fit is not improved. Significant improvement can 
be achieved, however, if the modulus of the fibrils at 45°C 
is less than that at -95°C, and a slight adjustment is 
made to the shear moduli. This latter change is not too 
serious in the light of the reservations concerning the 
shear moduli expressed above. 

Because of the large quantity of unknowns in equations 
(3) and (4) it is not possible to rigorously test the fibre 
composite model. The good agreement obtained here 
shows that the model cannot be excluded. However, until 
some of the parameters are more accurately known, its 
use must be considered limited. 

Arridge and Barham 9 have used the fibre composite 
model to interpret the room temperature moduli of IPP 
but have used a considerably lower value for c of 0.58. 
They have also introduced a contribution to the macro- 
scopic modulus from the matrix phase, but have not 
extended the model to low temperatures. Although they 
found good agreement between model and experiment 
there is still the problem of identifying the model 
parameters with their morphological counterparts. Like 
the work here, it suffers from the criticism of being a 
mathematical, rather than a physical exercise, although 
it is possible that further work may resolve this problem 
and give the model physical support. 

DISCUSSION 

Figure 2 shows that the mechanical behaviour is very 
dependent on temperature whilst the presence of the fl 
relaxation at about 20°C for a frequency of 10Hz is 
indicated by the tan 6 curves in Figure 3. This relaxation 
is considered to be due to the onset of chain mobility in 
the non-crystalline phase 27. It is therefore necessary to 
select carefully in the first instance the temperature or 
temperatures at which detailed mechanical modelling 
should be attempted. Low temperatures should provide 
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some simplification as the structure is then rigid and 
molecular orientation is likely to be the dominant factor, 
although it is possible that the presence of two phases is 
still important. A temperature of -95°C was considered 
suitable for these purposes. Selection of a second 
temperature is not so easy because of the presence of the 
fl relaxation at about room temperature but a value of 
45°C was considered appropriate to include the effects 
of this relaxation in the mechanical response at 10 Hz. 
The reasonable agreement between the dynamic moduli at 
this temperature and the isochronal creep moduli at room 
temperature can be explained in terms of time/temperature 
equivalence. 

For the rigid structure the single-phase aggregate 
model is remarkably successful when the crystalline 
compliances are used, indicating that below the fl 
relaxation the mechanical behaviour of the non-crystalline 
phase is similar to that of the crystalline phase. As is the 
case with other materials, better agreement is found when 
Reuss averaging, rather than Voigt averaging is used. A 
significant improvement of this approach over previous 
applications of the model to other materials lies in the 
fact that the values for the intrinsic compliances, with 
one exception, (2s13+s44), are more closely identified 
with the crystalline phase rather than being obtained 
from measurements on very highly oriented samples, 
Nevertheless, the value chosen for this one unknown 
parameter, 0.41 G P a -  1, is reasonable in the light of low 
temperature measurements of the shear modulus on 
oriented samples, whilst ultrasonic measurements of $13 
and $44 at temperatures below the glass transition, 
carried out by Leung and Choy 14, indicate a value for 
(2sl 3 + s44) slightly less than 0.5 GPa-1.  In any case, the 
predictions of the model are comparatively insensitive to 
relatively large changes in the value of this parameter. 

At temperatures above the fl relaxation the difference 
between the properties of the two phases becomes 
pronounced and consequently a single phase model 
would not be expected to work. The success of a two 
phase model, however, is perhaps better than expected, 
although the quality of the fit in Figure 6 depends on the 
assumption of homogeneous stress in the isotropic 
material and the values chosen for s] 1 and (2s] 3-[-~4)" 
How these values relate to those of the crystal, or perhaps 
more specifically the non-crystalline material at low 
temperatures, depends on which are the most sensitive 
to the increased mobility of the molecules above the fl 
relaxation. The best agreement in Figure 6 is achieved 
when s]l is considered to be the most temperature 
sensitive and suggests that the reason why a two phase 
model is necessary above the fl relaxation is because this 
relaxation significantly affects the value of sll for the 
non-crystalline phase. 

Such an explanation, however, would also suggest that 
the removal of the /3 relaxation through orientation 
would introduce an orientation dependence to the value 
of s] 1. A consequence of this is the expectation that the 
modulus of a sample drawn past this stage would be 
relatively insensitive to changes in temperature. Figure 3 
shows that the fl relaxation has disappeared at high draw 
ratios yet there is still a considerable difference between 
the high and low temperature moduli. This temperature 
dependence of the macroscopic moduli can be explained 
by introducing a temperature dependence to the shear 
component in the non-crystalline material, (2s~3 + s~4. ). 
It is not unreasonable to expect this temperature 
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dependence to be significant in the highly drawn samples 
where the structure is more regular. 

It is also possible that s33 for both crystalline and non- 
crystalline material is temperature dependent. Tadaoki 
et al. 2s have shown that the chain modulus can fall as 
the temperature increases because of atomic vibrations. 
They showed that the lattice compliance of Kevlar 49 
rose by about 25% between 300K and 500K. While 
measurements of s~3 from the crystal strain experiments 
reported here are not accurate enough and do not cover 
a wide enough temperature range to exclude such a 
variation for IPP, they do show that there is no significant 
change in the apparent lattice compliance caused by 
crossing the fl relaxation. This implies that there is no 
change in the mechanical coupling and that Reuss 
averaging applies above and below the/~ relaxation. Such 
a view is supported by the success of Reuss averaging in 
both the single and two phase aggregate models. Recent 
work in our laboratories 29 would suggest that s~3 is 
temperature dependent but this may arise for the reason 
given by Tadaoki et al. and not through changes in the 
mechanical coupling. 

Obviously, the introduction of temperature and orien- 
tation dependent intrinsic properties renders the model 
much more complicated but it might be possible to model 
the mechanical behaviour With an orientation sensitive 
value for s] 1, so that the contribution to the macroscopic 
compliance from the s]l term drops for two reasons; 
namely the appropriate value for (sin 4 0) is low because 
of the high orientation; and the value of s]l has fallen 
because of the conformations being locked in by physical 
constraints, e.g. taut tie molecules. At the same time the 
creation of a more regular structure with increasing 
orientation might cause an increase in the value of 
(2s]a+s~4). Thus, at a particular temperature, the 
mechanical improvement at high draw ratios occurs 
because of the removal of the fl relaxation but the 
variation with temperature occurs because the sensitivity 
of the shear term to changes in temperature increases at 
high draw ratios. 

The importance of shear at high draw ratios is implied 
by the partial success of the fibre composite analysis. For 
close hexagonal packing of the fibrils the agreement of 
the model with low temperature data is very good for 
draw ratios greater than 8, setting a value for the draw 
ratio at which transformation from spherulitic to fibrillar 
structure is complete. This agrees with the analysis of 
Peterlin 3°. One problem with the fibre composite model 
is the identification of the fibre phase and an estimation 
of the fibre modulus considering that measurements of 
crystallinity are considerably less than the value for c. If 
the fibre phase is identified with the morphologically 
distinct microfibrils, at low temperatures the moduli of 
the fibrils might be expected to be close to the crystal 
value, but at temperatures above the glass relaxation the 
moduli of the fibrils are more likely to be less than the 
crystal modulus. This change in modulus (with tempera- 
ture) of the fibre phase might explain the more gradual 
rise in modulus at 45°C than is predicted from the fibre 
composite model. 

Recent work by Taraiya et al. 11 suggests that stacked 
lamellae in highly oriented polypropylene are bridged by 
a combination of disordered crystallites and taut tie 
molecules. Although this particular intercrystalline bridge 
model is not the same as that discussed for oriented 
polyethylene 1° it is interesting to note that at the 
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conformational level there is no distinction between taut 
tie molecules and the molecules in disordered or con- 
ventional polypropylene crystallites, the molecules all 
adopting the 31 conformation. This, together with the 
comparative success of the fibre composite model, raises 
the interesting possibility that the fibre phase might be 
identified with stereoregular sequences of 31 IPP. 

CONCLUSIONS 

The mechanical behaviour of isotactic polypropylene at 
low temperatures has been shown to be independent of 
the morphology and can be predicted by a single phase 
aggregate model using measurements of the overall 
orientation and the intrinsic mechanical properties of the 
crystalline phase. The aggregate model has also proved 
successful above the fl relaxation when the crystalline and 
non-crystalline phases are considered separately. The 
major surprise is the success of Reuss averaging both 
above and below the fl relaxation. This situation is given 
support by the fact that little change in the apparent 
crystal modulus is observed on crossing this relaxation. 
The disappearance of the fl relaxation in highly drawn 
samples leads to an increase in modulus possibly through 
a change in the lateral compliance value s]l. The 
temperature dependence of the moduli of these highly 
drawn samples depends on the greater temperature 
sensitivity of the shear term when the fl relaxation has 
been removed. The importance of shear is seen from the 
partial success of the fibre composite model. Above a 
draw ratio of about 8, mechanical improvement may be 
achieved by increasing the reinforcing effect of a fibre 
phase. If the fibre phase is identified with the fibrillar 
structure this may be achieved through an increase in 
the fibril moduli, caused by an increase in tie molecules, 
as well as through changes in the aspect ratio and matrix 
shear modulus. Alternatively, it is possible that the fibre 
phase may be sections of stereoregular molecule in the 
31 helical conformation, in which case a greater reinforce- 
ment may be produced by removal of kinks in the chains. 
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